Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 870
Filter
1.
Lab Invest ; : 102059, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38615731

ABSTRACT

High-grade serous ovarian cancer (HGSOC) remains the most lethal female cancer by far. Herein, clinical HGSOC samples had higher N6-methyladenosine (m6A) modification than normal ovarian tissue, and its dysregulation had been reported to drive aberrant transcription and translation programs. However, Kringle containing transmembrane protein 2 (KREMEN2) and its m6A modification have not been fully elucidated in HGSOC. In this study, the data from the high-throughput mRNA sequencing (RNA-seq) of clinical samples were processed using the weighted correlation network analysis (WGCNA) and functional enrichment analysis. Results revealed that KREMEN2 was a driver gene in the tumorigenesis of HGSOC and a potential target of m6A demethylase fat-mass and obesity-associated protein (FTO). KREMEN2 and FTO levels were upregulated and downregulated, respectively, and correlation analysis showed a significant negative correlation in HGSOC samples. Importantly, upregulated KREMEN2 was remarkably associated with lymph node (LN) metastasis, distant metastasis, peritoneal metastasis, and high FIGO stage (Ⅲ/Ⅳ), independent of the age of patients. KREMEN2 promoted the growth of HGSOC in vitro and in vivo, which was dependent on FTO. The methylated RNA immunoprecipitation-qPCR and RNA immunoprecipitation assays were performed to verify the m6A level and sites of KREMEN2. FTO overexpression significantly decreased m6A modification in 3'UTR and 5'UTR regions of KREMEN2 mRNA and downregulated its expression. In addition, we found that FTO-mediated m6A modification of KREMEN2 mRNA was recognized and stabilized by the m6A reader IGF2BP1 rather than IGF2BP2 or IGF2BP3. This study highlights the m6A modification of KREMEN2 and extends the importance of RNA epigenetics in HGSOC.

2.
Chempluschem ; : e202400108, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497136

ABSTRACT

Atmospheric new particle formation (NPF), which exerts comprehensive implications for climate, air quality and human health, has received extensive attention. From molecule to cluster is the initial and most important stage of the nucleation process of atmospheric new particles. However, due to the complexity of the nucleation process and limitations of experimental characterization techniques, there is still a great uncertainty in understanding the nucleation mechanism at the molecular level. Laboratory-based molecular beam methods can experimentally implement the generation and growth of typical atmospheric gas-phase nucleation precursors to nanoscale clusters, characterize the key physical and chemical properties of clusters such as structure and composition, and obtain a series of their physicochemical parameters, including association rate coefficients, electron binding energy, pickup cross section and pickup probability and so on. These parameters can quantitatively illustrate the physicochemical properties of the cluster, and evaluate the effect of different gas phase nucleation precursors on the formation and growth of atmospheric new particles. We review the present literatures on atmospheric cluster formation and reaction employing the experimental method of laboratory molecular beam. The experimental apparatuses were classified and summarized from three aspects of cluster generation, growth and detection processes. Focus of this review is on the properties of nucleation clusters involving different precursor molecules of water, sulfuric acid, nitric acid and NxOy, respectively. We hope this review will provide a deep insight for effects of cluster physicochemical properties on nucleation, and reveal the formation and growth mechanism of atmospheric new particle at the molecular level.

3.
Int J Biol Macromol ; 265(Pt 1): 130648, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460640

ABSTRACT

The topic of biobased flame-retardant PLA has always been of great interest. In our study, we successfully synthesized a phosphorus-containing chitosan derivative (PCS) and combined it with aluminum hypophosphate (AP) to create an effective flame-retardant PLA system. PCS acted as an enhancer, enhancing the thermal performance, crystallinity, and toughness of PLA/AP. Compared to PLA modified with 12 wt% AP achieving UL-94 V-2 level and 24.3 % of limited oxygen index, PLA containing 3 wt% PCS and 9 wt% AP achieved UL-94 V-0 level and limited oxygen index of 28 %. The system testing studies such as CCT, Raman, XPS, and TG-IR results indicated that PLA/AP/PCS exhibited a dual flame-retardant mechanism of condensed and gas phases.


Subject(s)
Chitosan , Flame Retardants , Crystallization , Polyesters , Oxygen , Phosphorus
4.
J Environ Manage ; 355: 120365, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38460328

ABSTRACT

Land use/land cover (LULC) change and climate change are interconnected factors that affect the ecological environment. However, there is a lack of quantification of the impacts of LULC change and climate change on landscape ecological risk under different shared socioeconomic pathways and representative concentration pathways (SSP-RCP) on the Mongolian Plateau (MP). To fill this knowledge gap and understand the current and future challenges facing the MP's land ecological system, we conducted an evaluation and prediction of the effects of LULC change and climate change on landscape ecological risk using the landscape loss index model and random forest method, considering eight SSP-RCP coupling scenarios. Firstly, we selected MCD12Q1 as the optimal LULC product for studying landscape changes on the MP, comparing it with four other LULC products. We analyzed the diverging patterns of LULC change over the past two decades and observed significant differences between Mongolia and Inner Mongolia. The latter experienced more intense and extensive LULC change during this period, despite similar climate changes. Secondly, we assessed changes in landscape ecological risk and identified the main drivers of these changes over the past two decades using a landscape index model and random forest method. The highest-risk zone has gradually expanded, with a 30% increase compared to 2001. Lastly, we investigated different characteristics of LULC change under different scenarios by examining future LULC products simulated by the FLUS model. We also simulated the dynamics of landscape ecological risks under these scenarios and proposed an adaptive development strategy to promote sustainable development in the MP. In terms of the impact of climate change on landscape ecological risk, we found that under the same SSP scenario, increasing RCP emission concentrations significantly increased the areas with high landscape ecological risk while decreasing areas with low risk. By integrating quantitative assessments and scenario-based modeling, our study provides valuable insights for informing sustainable land management and policy decisions in the region.


Subject(s)
Climate Change , Conservation of Natural Resources , Conservation of Natural Resources/methods , Ecosystem , Sustainable Development , Forecasting
5.
Nat Commun ; 15(1): 2107, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453911

ABSTRACT

Inflammatory arthritis (IA) is a common rheumatic adverse event following immune checkpoint inhibitors treatment. The clinical disparities between IA and rheumatoid arthritis (RA) imply disease heterogeneity and distinct mechanisms, which remain elusive. Here, we profile CD45+ cells from the peripheral blood or synovial fluid (SF) of patients with PD-1-induced IA (PD-1-IA) or RA using single-cell RNA sequencing. We report the predominant expansion of IL1Bhi myeloid cells with enhanced NLRP3 inflammasome activity, in both the SF and peripheral blood of PD-1-IA, but not RA. IL1Bhi macrophages in the SF of PD-1-IA shared similar inflammatory signatures and might originate from peripheral IL1Bhi monocytes. Exhausted CD8+ T cells (Texs) significantly accumulated in the SF of patients with PD-1-IA. IL1Bhi myeloid cells communicated with CD8+ Texs possibly via the CCR1-CCL5/CCL3 and CXCL10-CXCR3 axes. Collectively, these results demonstrate different cellular and molecular pathways in PD-1-IA and RA and highlight IL1Bhi macrophages as a possible therapeutic target in PD-1-IA.


Subject(s)
Arthritis, Rheumatoid , Immune Checkpoint Inhibitors , Humans , CD8-Positive T-Lymphocytes/metabolism , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Inflammation/metabolism , Macrophages/metabolism , Synovial Fluid , Interleukin-1beta/genetics , Interleukin-1beta/metabolism
6.
BMC Bioinformatics ; 25(Suppl 1): 100, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448823

ABSTRACT

BACKGROUND: In the past decade, single nucleotide variants (SNVs) have been identified as having a significant relationship with the development and treatment of diseases. Among them, prioritizing missense variants for further functional impact investigation is an essential challenge in the study of common disease and cancer. Although several computational methods have been developed to predict the functional impacts of variants, the predictive ability of these methods is still insufficient in the Mendelian and cancer missense variants. RESULTS: We present a novel prediction method called the disease-related variant annotation (DVA) method that predicts the effect of missense variants based on a comprehensive feature set of variants, notably, the allele frequency and protein-protein interaction network feature based on graph embedding. Benchmarked against datasets of single nucleotide missense variants, the DVA method outperforms the state-of-the-art methods by up to 0.473 in the area under receiver operating characteristic curve. The results demonstrate that the proposed method can accurately predict the functional impact of single nucleotide missense variants and substantially outperforms existing methods. CONCLUSIONS: DVA is an effective framework for identifying the functional impact of disease missense variants based on a comprehensive feature set. Based on different datasets, DVA shows its generalization ability and robustness, and it also provides innovative ideas for the study of the functional mechanism and impact of SNVs.


Subject(s)
Benchmarking , Neoplasms , Humans , Gene Frequency , Mutation, Missense , Nucleotides
7.
Comput Biol Med ; 171: 108174, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38442557

ABSTRACT

Lung cancer poses a global health challenge, necessitating advanced diagnostics for improved outcomes. Intensive efforts are ongoing to pinpoint early detection biomarkers, such as genomic variations and DNA methylation, to elevate diagnostic precision. We conducted long-read sequencing on cancerous and adjacent non-cancerous tissues from a patient with lung adenocarcinoma. We identified somatic structural variations (SVs) specific to lung cancer by integrating data from various SV calling methods and differentially methylated regions (DMRs) that were distinct between these two tissue samples, revealing a unique methylation pattern associated with lung cancer. This study discovered over 40,000 somatic SVs and over 180,000 DMRs linked to lung cancer. We identified approximately 700 genes of significant relevance through comprehensive analysis, including genes intricately associated with many lung cancers, such as NOTCH1, SMOC2, CSMD2, and others. Furthermore, we observed that somatic SVs and DMRs were substantially enriched in several pathways, such as axon guidance signaling pathways, which suggests a comprehensive multi-omics impact on lung cancer progression across various biological investigation levels. These datasets can potentially serve as biomarkers for early lung cancer detection and may hold significant value in clinical diagnosis and treatment applications.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/diagnosis , DNA Methylation/genetics , Adenocarcinoma of Lung/genetics , Oligonucleotide Array Sequence Analysis , Biomarkers
8.
Environ Sci Pollut Res Int ; 31(16): 24042-24050, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436850

ABSTRACT

To determine that p38 MAPK activation contributes to the migration and invasion of lung cancer cells caused by cadmium (Cd). A549 lung cancer cell migration and invasion were assessed using a transwell plate system, and the role of p38 was determined by knocking down p38 activity with two different inhibitors of p38. The activity of p38 was measured by western blot analysis using phospho-specific p38 antibodies and normalized to blots using antibodies directed to total p38 proteins. Snail transcripts were measured using qRT-PCR. The inhibition of p38 blocked Cd-induced migration and invasion, which correlated with an increased activation of p38 as a function of dose and time. Furthermore, Cd-induced activation of p38 MAPK controlled the increase of snail mRNA expression. The p38 MAPK/snail signaling axis was involved in Cd-induced lung cancer cell migration and invasion.


Subject(s)
Cadmium , Lung Neoplasms , MAP Kinase Signaling System , Humans , Cell Line, Tumor , Cell Movement , Lung Neoplasms/pathology , Neoplasm Invasiveness , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Brief Bioinform ; 25(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38385878

ABSTRACT

Structural Variants (SVs) are a crucial type of genetic variant that can significantly impact phenotypes. Therefore, the identification of SVs is an essential part of modern genomic analysis. In this article, we present kled, an ultra-fast and sensitive SV caller for long-read sequencing data given the specially designed approach with a novel signature-merging algorithm, custom refinement strategies and a high-performance program structure. The evaluation results demonstrate that kled can achieve optimal SV calling compared to several state-of-the-art methods on simulated and real long-read data for different platforms and sequencing depths. Furthermore, kled excels at rapid SV calling and can efficiently utilize multiple Central Processing Unit (CPU) cores while maintaining low memory usage. The source code for kled can be obtained from https://github.com/CoREse/kled.


Subject(s)
Algorithms , Genomics , Phenotype , Software
10.
Front Plant Sci ; 15: 1297468, 2024.
Article in English | MEDLINE | ID: mdl-38379943

ABSTRACT

Water shortage seriously restricts the development of grassland agriculture in arid land and dramatically impacts alfalfa (Medicago sativa L.) quality content and hay yield. Reasonable irrigation methods have the potential to enhance the alfalfa quality content, hay yield, and thus quality yield. Whether partial root-zone drying subsurface drip irrigation (PRDSDI) improves the alfalfa quality yield, quality content, and hay yield is still unknown compared with conventional subsurface drip irrigation (CSDI). The effects of PRDSDI compared with that of CSDI and the interaction with irrigation volume (10 mm/week, 20 mm/week, and 30 mm/week) on the alfalfa quality yield were investigated in 2017-2018 and explained the change in quality yield with the alfalfa quality content and hay yield. Here, the results showed that PRDSDI did not increase the alfalfa quality yield in 2 years. PRDSDI significantly increased acid detergent fiber by 13.3% and 12.2% in 2018 with 10-mm and 20-mm irrigation volumes and neutral detergent fiber by 16.2%, 13.2%, and 12.6% in 2017 with 10-mm, 20-mm, and 30-mm irrigation volumes, respectively. PRDSDI significantly decreased the crude protein by 5.4% and 8.4% in 2018 with 10-mm and 20-mm irrigation volumes and relative feed value by 15.0% with 20-mm irrigation volume in 2017 and 9.8% with 10-mm irrigation volume in 2018, respectively. In addition, PRDSDI significantly increased the alfalfa average hay yield by 49.5% and 59.6% with 10-mm and 20-mm irrigation volumes in 2018, respectively. Our results provide a counterexample for PRDSDI to improve crop quality. Although there was no significant improvement in average quality yield by PRDSDI, the positive impact of average hay yield on quality yield outweighed the negative impact of quality content. Thus, it has the potential to improve quality yields. The novel findings regarding the effects of PRDSDI on quality yield are potentially favorable for the forage feed value in water-limited areas.

11.
Lab Chip ; 24(6): 1762-1774, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38352981

ABSTRACT

Many efforts have been paid to advance the effectiveness of personalized medicine for lung cancer patients. Sequencing-based molecular diagnosis of EGFR mutations has been widely used to guide the selection of anti-lung-cancer drugs. Organoid-based assays have also been developed to ex vivo test individual responses to anti-lung-cancer drugs. After addressing several technical difficulties, a new combined strategy, in which anti-cancer medicines are first selected based on molecular diagnosis and then ex vivo tested on organoids, has been realized in a single dual-functional microfluidic chip. A DNA-based nanoruler has been developed to detect the existence of EGFR mutations and shrink the detection period from weeks to hours, compared with sequencing. The employment of the DNA-based nanoruler creates a possibility to purposively test anti-cancer drugs, either EGFR-TKIs or chemotherapy drugs, not both, on limited amounts of organoids. Moreover, a DNA-based nanosensor has been developed to recognize intracellular ATP variation without harming cell viability, realizing in situ monitoring of the whole course growth status of organoids for on-chip drug response test. The dual-functional microfluidic chip was validated by both cell lines and clinical samples from lung cancer patients. Furthermore, based on the dual-functional microfluidic chip, a fully automated system has been developed to span the divide between experimental procedures and therapeutic approaches. This study constitutes a novel way of combining EGFR mutation detection and organoid-based drug response test on an individual patient for guiding personalized lung cancer medicine.


Subject(s)
Antineoplastic Agents , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Microfluidics , Precision Medicine , ErbB Receptors/genetics , Mutation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Organoids , DNA
12.
Eur J Clin Microbiol Infect Dis ; 43(4): 713-721, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38347245

ABSTRACT

BACKGROUND AND AIM: Patients with end-stage liver disease (ESLD) are susceptible to invasive pulmonary aspergillosis (IPA). This study aimed to investigate the risk factors affecting the occurrence and short-term prognosis of ESLD complicated by IPA. METHODS: This retrospective case-control study included 110 patients with ESLD. Of them, 27 ESLD-IPA received antifungal therapy with amphotericin B (AmB); 27 AmB-free-treated ESLD-IPA patients were enrolled through 1:1 propensity score matching. Fifty-six ESLD patients with other comorbid pulmonary infections were enrolled as controls. The basic features of groups were compared, while the possible risk factors affecting the occurrence and short-term outcomes of IPA were analyzed. RESULTS: Data analysis revealed invasive procedures, glucocorticoid exposure, and broad-spectrum antibiotic use were independent risk factors for IPA. The 54 patients with ESLD-IPA exhibited an overall treatment effectiveness and 28-d mortality rate of 50.00% and 20.37%, respectively, in whom patients treated with AmB-containing showed higher treatment efficacy than patients treated with AmB-free antifungal regimens (66.7% vs. 33.3%, respectively, χ2 = 6.000, P = 0.014). Multivariate logistic regression analysis revealed that the treatment regimen was the only predictor affecting patient outcomes, with AmB-containing regimens were 4.893 times more effective than AmB-free regimens (95% CI, 1.367-17.515; P = 0.015). The only independent predictors affecting the 28-d mortality rate were neutrophil-to-lymphocyte ratio and IPA diagnosis (OR = 1.140 and 10.037, P = 0.046 and 0.025, respectively). CONCLUSIONS: Glucocorticoid exposure, invasive procedures, and broad-spectrum antibiotic exposure increased the risk of IPA in ESLD patients. AmB alone or combined with other antifungals may serve as an economical, safe, and effective treatment option for ESLD-IPA.


Subject(s)
End Stage Liver Disease , Invasive Pulmonary Aspergillosis , Humans , Antifungal Agents , Retrospective Studies , Case-Control Studies , Glucocorticoids , Amphotericin B/therapeutic use , Prognosis , Risk Factors , Anti-Bacterial Agents/therapeutic use
13.
Acta Neurochir (Wien) ; 166(1): 35, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270682

ABSTRACT

BACKGROUND: Presently, a consistent strategy for determining the stability of unruptured intracranial aneurysms (UIAs) in elderly patients is lacking, primarily due to the unique characteristics of this demographic. Our objective was to assess the risk factors contributing to aneurysm instability (growth or rupture) within the elderly population. METHODS: In this study, we compiled data from follow-up patients with UIAs spanning from November 2016 to August 2021. We specifically focused on patients aged ≥ 60 years. Clinical histories were gathered, and morphological parameters of aneurysms were measured. The growth of aneurysms was determined using the computer-assisted semi-automated measurement (CASAM). Growth and rupture rates of UIAs were calculated, and both univariate and multivariate Cox regression analyses were conducted. Additionally, Kaplan-Meier survival curves were plotted. RESULTS: A total of 184 patients with 210 aneurysms were enrolled in the study. The follow-up period encompasses 506.6 aneurysm-years and 401.4 patient-years. Among all the aneurysms, 23 aneurysms exhibited growth, with an annual aneurysm growth rate of 11.0%, and 1 (4.5%) experienced rupture, resulting in an annual aneurysm rupture rate of 0.21%. Multivariate Cox analysis identified poorly controlled hypertension (P = 0.011) and high-risk aneurysms (including anterior cerebral artery (ACA), anterior communicating artery (AcoA), posterior communicating artery aneurysm (PcoA), posterior circulation (PC) > 4 mm or distal internal carotid artery (ICAd), middle cerebral artery (MCA), and PC > 7 mm) (P = 0.006) as independent risk factors for the development of unstable aneurysms. CONCLUSIONS: In the elderly, poorly controlled hypertension and high-risk aneurysms emerge as significant risk factors for aneurysm instability. This underscores the importance of rigorous surveillance or timely intervention in patients presenting with these risk factors.


Subject(s)
Aneurysm, Ruptured , Hypertension , Intracranial Aneurysm , Humans , Aged , Adult , Child , Intracranial Aneurysm/epidemiology , Risk Factors , Aneurysm, Ruptured/epidemiology , Anterior Cerebral Artery
14.
Molecules ; 29(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38257253

ABSTRACT

A high phosphoric acid uptake and retention capacity are crucial for the high performance and stable operation of phosphoric acid/polybenzimidazole (PA/PBI)-based high-temperature proton exchange membranes. In this work, amine end-functionalized side-chain grafted PBI (AGPBI) with different grafting degrees are synthesized to enhance both the phosphoric acid uptake and the acid retention ability of the accordingly formed membranes. The optimized acid-base membrane exhibits a PA uptake of 374.4% and an anhydrous proton conductivity of 0.067 S cm-1 at 160 °C, with the remaining proton conductivity percentages of 91.0% after a 100 h stability test. The accordingly fabricated membrane electrode assembly deliver peak power densities of 0.407 and 0.638 W cm-2 under backpressure of 0 and 200 kPa, which are significantly higher than 0.305 and 0.477 W cm-2 for the phosphoric acid-doped unmodified PBI membrane under the same conditions.

15.
Cell ; 187(4): 846-860.e17, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38262409

ABSTRACT

RNAs localizing to the outer cell surface have been recently identified in mammalian cells, including RNAs with glycan modifications known as glycoRNAs. However, the functional significance of cell surface RNAs and their production are poorly known. We report that cell surface RNAs are critical for neutrophil recruitment and that the mammalian homologs of the sid-1 RNA transporter are required for glycoRNA expression. Cell surface RNAs can be readily detected in murine neutrophils, the elimination of which substantially impairs neutrophil recruitment to inflammatory sites in vivo and reduces neutrophils' adhesion to and migration through endothelial cells. Neutrophil glycoRNAs are predominantly on cell surface, important for neutrophil-endothelial interactions, and can be recognized by P-selectin (Selp). Knockdown of the murine Sidt genes abolishes neutrophil glycoRNAs and functionally mimics the loss of cell surface RNAs. Our data demonstrate the biological importance of cell surface glycoRNAs and highlight a noncanonical dimension of RNA-mediated cellular functions.


Subject(s)
Endothelial Cells , Neutrophil Infiltration , Neutrophils , RNA , Animals , Mice , Endothelial Cells/metabolism , Neutrophils/metabolism , RNA/chemistry , RNA/metabolism , Nucleotide Transport Proteins/genetics , Nucleotide Transport Proteins/metabolism
16.
STAR Protoc ; 5(1): 102816, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38180833

ABSTRACT

Although the male epididymal fat pad is an effective site for islet transplantation, females lack this tissue. Here, we present a protocol to assess the parametrial fat pad (PFP) adjacent to the uterine horn in females as an alternative site for islet transplantation. We describe steps for islet isolation from the pancreas, counting, transplantation into PFP, and monitoring for engraftment. Transplantation into PFP is minimally invasive, time efficient, and supports long-term engraftment of syngeneic islets and rejection of allogeneic islets. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022).1.


Subject(s)
Diabetes Mellitus, Experimental , Islets of Langerhans Transplantation , Islets of Langerhans , Transplants , Male , Mice , Female , Animals , Islets of Langerhans Transplantation/methods , Adipose Tissue
17.
Nat Comput Sci ; 3(8): 687-699, 2023 Aug.
Article in English | MEDLINE | ID: mdl-38177318

ABSTRACT

Turbulence exists widely in the natural atmosphere and in industrial fluids. Strong randomness, anisotropy and mixing of multiple-scale eddies complicate the analysis and measurement of atmospheric turbulence. Although the spatially integrated strength of atmospheric turbulence can be roughly measured indirectly by Doppler radar or laser, direct measurement of two-dimensional (2D) strength fields of atmospheric turbulence is challenging. Here we attempt to solve this problem through infrared imaging. Specifically, we propose a physically boosted cooperative learning framework, termed the PBCL, to quantify 2D turbulence strength from infrared images. To demonstrate the capability of the PBCL, we constructed a dataset with 137,336 infrared images and corresponding 2D turbulence strength fields. The experimental results show that cooperative learning brings performance improvements, enabling the PBCL to simultaneously learn turbulence strength fields and inhibit adverse turbulence effects in images. Our work demonstrates the potential of imaging in measuring physical quantity fields.


Subject(s)
Atmosphere , Lasers , Diagnostic Imaging
18.
Heliyon ; 10(1): e23205, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38169765

ABSTRACT

Background: With the development of medical technology and change of life habits, early-stage lung adenocarcinoma (LUAD) has become more common. This study aimed to systematically analyzed clinicopathological factors associated to the overall survival (OS) of patients with Stage IA LUAD. Methods: A total of 5942 Stage IA LUAD patients were obtained from the Surveillance, Epidemiology, and End Results (SEER) database. Kaplan-Meier methods and log-rank tests were used to compare the differences in OS. A nomogram constructed based on the Cox regression was evaluated by Concordance index (C index), calibration curve, decision curve analysis (DCA) and area under curve (AUC). And 136 patients were recruited from Shandong Province Hospital for external validation. Results: Cox analysis regression indicated that 12 factors, such as Diagnosis to Treatment Interval (DTI) and Income Level, were independent prognostic factors and were included to establish the nomogram. The C-index of our novel model was 0.702, 0.724 and 0.872 in the training, internal and external validation cohorts, respectively. The 3-year and 5-year survival AUCs and calibration curves showed excellent agreement in each cohort. Some new factors in the SEER database, including DTI and Income Level, were firstly confirmed as independent prognostic factors of Stage IA LUAD patients. The distribution of these factors in the T1a, T1b, and T1c subgroups differed and had different effects on survival. Conclusion: We summarized 12 factors that affect prognosis and constructed a nomogram to predict OS of Stage IA LUAD patients who underwent operation. For the first time, new SEER database parameters, including DTI and Income Level, were proved to be survival-related.

19.
Zhongguo Fei Ai Za Zhi ; 26(12): 950-956, 2024 Jan 02.
Article in Chinese | MEDLINE | ID: mdl-38163981

ABSTRACT

Due to the advancement of 16S rRNA sequencing technology, the lower respiratory tract microbiota, which was considered non-existent, has been revealed. The correlation between these microorganisms and diseases such as tumor has been a hot topic in recent years. As the bacteria in the surrounding can infiltrate the tumors, researchers have also begun to pay attention to the biological behavior of tumor bacteria and their interaction with tumors. In this review, we present the characteristic of the lower respiratory tract bacteria and summarize recent research findings on the relationship between these microbiota and lung cancer. On top of that, we also summarize the basic feature of bacteria in tumors and focus on the characteristic of the bacteria in lung cancer. The relationship between bacteria in lung cancer and tumor development is also been discussed. Finally, we review the potential clinical applications of bacterial communities in the lower respiratory tract and lung cancer, and summarize key points of sample collection, sequencing, and contamination control, hoping to provide new ideas for the screening and treatment of tumors.
.


Subject(s)
Lung Neoplasms , Microbiota , Humans , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Respiratory System , Lung/microbiology
20.
J Hazard Mater ; 465: 133288, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38154182

ABSTRACT

The existence of dissolved organic matter (DOM) with low coagulability poses great challenges for conventional coagulation (CC) in water treatment. As a kind of typical organochlorine pesticide, 2,4-dichlorophenoxyacetic acid (2,4-D) cannot be efficiently removed by CC. To enhance the 2,4-D removal, ozonation was applied with coagulation. The hybrid ozonation-coagulation (HOC) achieved 60.61% DOC removal efficiency, which was obviously higher than pre-ozonation coagulation (POC) (45.83%). Synchronous fluorescence spectroscopy revealed stronger complexation between modified 2,4-D and coagulants during the HOC than that in subsequent coagulation of the POC process. During the HOC process, ozone promoted the formation of polymeric Al species, such as Alb. To investigate the 2,4-D removal mechanism, γ-Al2O3/O3 process with the same oxidation ability as the HOC was established. 2,4-D was oxidized step-by-step to 2,4-dichlorophenol, 4,6-dichlororesorcin, 3,5-dichlorocatechol, 2-chlorohydroquinone, 4-chlorocatechol, 1,2,4,5-tetrahydroxybenzene, pentahydroxybenzene and oxalic acid in γ-Al2O3/O3 process. However, during the HOC process, these oxidized intermediates were readily complexed by coagulants and accumulated in flocs. Especially 1,2,4,5-tetrahydroxybenzene and pentahydroxybenzene, completely complexed by AlCl3•6H2O hydrolysates as soon as being formed. Immediate entrapment and complexation between coagulant hydrolysates and 2,4-D oxidized intermediates inhibited the generation of small-molecular-weight organics such as oxalic acid, which enhanced the removal of organics with low coagulability.

SELECTION OF CITATIONS
SEARCH DETAIL